Computation of rotation minimizing frames

Author:

Wang Wenping1,Jüttler Bert2,Zheng Dayue1,Liu Yang1

Affiliation:

1. University of Hong Kong, Hong Kong, China

2. Johannes Kepler University, Linz, Austria

Abstract

Due to its minimal twist, the rotation minimizing frame (RMF) is widely used in computer graphics, including sweep or blending surface modeling, motion design and control in computer animation and robotics, streamline visualization, and tool path planning in CAD/CAM. We present a novel simple and efficient method for accurate and stable computation of RMF of a curve in 3D. This method, called the double reflection method , uses two reflections to compute each frame from its preceding one to yield a sequence of frames to approximate an exact RMF. The double reflection method has the fourth order global approximation error, thus it is much more accurate than the two currently prevailing methods with the second order approximation error—the projection method by Klok and the rotation method by Bloomenthal, while all these methods have nearly the same per-frame computational cost. Furthermore, the double reflection method is much simpler and faster than using the standard fourth order Runge-Kutta method to integrate the defining ODE of the RMF, though they have the same accuracy. We also investigate further properties and extensions of the double reflection method, and discuss the variational principles in design moving frames with boundary conditions, based on RMF.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtual flow diverter deployment and embedding for hemodynamic simulations;Computers in Biology and Medicine;2024-09

2. Computational design of custom-fit PAP masks;Computers & Graphics;2024-08

3. Monge Surfaces. Generation, Discretisation and Application in Architecture;Nexus Network Journal;2024-07-22

4. Modeling Hair Strands with Roving Capsules;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

5. Genuine multi-sided parametric surface patches – A survey;Computer Aided Geometric Design;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3