Affiliation:
1. Cornell University, Ithaca, NY
Abstract
The NORTA method is a fast general-purpose method for generating samples of a random vector with given marginal distributions and given correlation matrix. It is known that there exist marginal distributions and correlation matrices that the NORTA method cannot match, even though a random vector with the prescribed qualities exists. We investigate this problem as the dimension of the random vector increases. Simulation results show that the problem rapidly becomes acute, in the sense that NORTA fails to work with an increasingly large proportion of correlation matrices. Simulation results also show that if one is willing to settle for a correlation matrix that is "close" to the desired one, then NORTA performs well with increasing dimension. As part of our analysis, we develop a method for sampling correlation matrices
uniformly
(in a certain precise sense) from the set of all such matrices. This procedure can be used more generally for sampling uniformly from the space of all symmetric positive definite matrices with diagonal elements fixed at positive values.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modelling and Simulation
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献