Target Tracking for Sensor Networks

Author:

Souza Éfren L.1,Nakamura Eduardo F.2,Pazzi Richard W.3

Affiliation:

1. Federal University of Western Para, Santarém-PA-Brazil

2. Federal University of Amazonas, Manaus-AM-Brazil

3. University of Ontario Institute of Technology, Oshawa-ON-Canada

Abstract

Target-tracking algorithms typically organize the network into a logical structure (e.g., tree, cluster, or faces) to enable data fusion and reduce communication costs. These algorithms often predict the target’s future position. In addition to using position forecasts for decision making, we can also use such information to save energy by activating only the set of sensors nearby the target’s trajectory. In this work, we survey of the state of the art of target-tracking techniques in sensor networks. We identify three different formulations for the target-tracking problem and classify the target-tracking algorithms based on common characteristics. Furthermore, for the sake of a better understanding of the target-tracking process, we organize this process in six components: target detection, node cooperation, position computation, future-position estimation, energy management, and target recovery. Each component has different solutions that affect the target-tracking performance.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A physics-informed deep learning liquid crystal camera with data-driven diffractive guidance;Communications Engineering;2024-03-13

2. Diffusion Models for Multi-target Adversarial Tracking;2023 International Symposium on Multi-Robot and Multi-Agent Systems (MRS);2023-12-04

3. Autonomous evolutionary learning for unmanned mobile platforms: Research progress and prospects;Chinese Science Bulletin;2023-11-01

4. A Nash-Based Evolutionary Algorithm for Dynamic Optimization in Multi-target UAV Tracking;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

5. A predictive target tracking framework for IoT using CNN–LSTM;Internet of Things;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3