On Sample Selection for Continual Learning: A Video Streaming Case Study

Author:

Dietmüller Alexander1,Jacob Romain1,Vanbever Laurent1

Affiliation:

1. ETH Zürich, Switzerland

Abstract

Machine learning (ML) is a powerful tool to model the complexity of communication networks. As networks evolve, we cannot only train once and deploy. Retraining models, known as continual learning, is necessary. Yet, to date, there is no established methodology to answer the key questions: With which samples to retrain? When should we retrain? We address these questions with the sample selection system Memento, which maintains a training set with the "most useful" samples to maximize sample space coverage. Memento particularly benefits rare patterns---the notoriously long "tail" in networking---and allows assessing rationally when retraining may help, i.e., when the coverage changes. We deployed Memento on Puffer, the live-TV streaming project, and achieved a 14 % reduction of stall time, 3.5× the improvement of random sample selection. Memento is model-agnostic and can be applied beyond video streaming.

Publisher

Association for Computing Machinery (ACM)

Reference77 articles.

1. Puffer. URL: https://puffer.stanford.edu/.

2. YouTube Statistics 2024 [Users by Country + Demographics] February 2024. URL: https://www.globalmediainsight.com/blog/youtube-users-statistics/.

3. Classic Meets Modern

4. Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and Lucas Page-Caccia. Online Continual Learning with Maximal Interfered Retrieval. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 11849--11860. Curran Associates, Inc., 2019. URL: http://papers.nips.cc/paper/9357-online-continual-learning-with-maximal-interfered-retrieval.pdf.

5. Interpretable Feedback for AutoML and a Proposal for Domain-customized AutoML for Networking

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3