Simulation-based comparisons of Tahoe, Reno and SACK TCP

Author:

Fall Kevin1,Floyd Sally1

Affiliation:

1. Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA

Abstract

This paper uses simulations to explore the benefits of adding selective acknowledgments (SACK) and selective repeat to TCP. We compare Tahoe and Reno TCP, the two most common reference implementations for TCP, with two modified versions of Reno TCP. The first version is New-Reno TCP, a modified version of TCP without SACK that avoids some of Reno TCP's performance problems when multiple packets are dropped from a window of data. The second version is SACK TCP, a conservative extension of Reno TCP modified to use the SACK option being proposed in the Internet Engineering Task Force (IETF). We describe the congestion control algorithms in our simulated implementation of SACK TCP and show that while selective acknowledgments are not required to solve Reno TCP's performance problems when multiple packets are dropped, the absence of selective acknowledgments does impose limits to TCP's ultimate performance. In particular, we show that without selective acknowledgments, TCP implementations are constrained to either retransmit at most one dropped packet per round-trip time, or to retransmit packets that might have already been successfully delivered.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 397 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Split Rendering with L4S Over 5G for Latency Critical Interactive XR Applications;IEEE Communications Magazine;2024-08

2. An Improved BBR Algorithm with Adaptive Congestion Control for LEO Satellite Networks;2024 International Conference on Cloud and Network Computing (ICCNC);2024-05-31

3. AggDeliv: Aggregating Multiple Wireless Links for Efficient Mobile Live Video Delivery;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

4. Distributed Congestion Control Based on Utility Function;Enfoque UTE;2024-04-01

5. Possible Improvements of TCP Protocol with the Use of Heuristic Methods;Tehnicki vjesnik - Technical Gazette;2024-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3