The Complexity of Black-Box Mechanism Design with Priors

Author:

Gergatsouli Evangelia1,Lucier Brendan2,Tzamos Christos3

Affiliation:

1. University of Wisconsin-Madison, Madison, WI

2. Microsoft Researchb, New England, One Memorial Drive, Cambridge, MA, USA

3. University of Wisconsin-Madison, Madison, WI, USA

Abstract

We study black-box reductions from mechanism design to algorithm design for welfare maximization in settings of incomplete information. Given oracle access to an algorithm for an underlying optimization problem, the goal is to simulate an incentive compatible mechanism. The mechanism will be evaluated on its expected welfare, relative to the algorithm provided, and its complexity is measured by the time (and queries) needed to simulate the mechanism on any input. While it is known that black-box reductions are not possible in many prior-free settings, settings with priors appear more promising: there are known reductions for Bayesian incentive compatible (BIC) mechanism design for general classes of welfare maximization problems. This dichotomy begs the question: which mechanism design problems admit black-box reductions, and which do not? Our main result is that black-box mechanism design is impossible under two of the simplest settings not captured by known positive results. First, for the problem of allocating n goods to a single buyer whose valuation is additive and independent across the goods, subject to a downward-closed constraint on feasible allocations, we show that there is no polytime (in n ) BIC black-box reduction for expected welfare maximization. Second, for the setting of multiple single-parameter agents—where polytime BIC reductions are known—we show that no polytime reductions exist when the incentive requirement is tightened to Max-In-Distributional-Range. In each case, we show that achieving a sub-polynomial approximation to the expected welfare requires exponentially many queries, even when the set of feasible allocations is known to be downward-closed.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Marketing,Economics and Econometrics,Statistics and Probability,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3