Power-efficient Spike Sorting Scheme Using Analog Spiking Neural Network Classifier

Author:

Mukhopadhyay Anand Kumar1,Sharma Atul1,Chakrabarti Indrajit1,Basu Arindam2,Sharad Mrigank1

Affiliation:

1. Indian Institute of Technology Kharagpur, Kharagpur, India

2. Nanyang Technological University Singapore, Singapore

Abstract

The method to map the neural signals to the neuron from which it originates is spike sorting. A low-power spike sorting system is presented for a neural implant device. The spike sorter constitutes a two-step trainer module that is shared by the signal acquisition channel associated with multiple electrodes. A low-power Spiking Neural Network (SNN) module is responsible for assigning the spike class. The two-step shared supervised on-chip training module is presented for improved training accuracy for the SNN. Post implant, the relatively power-hungry training module can be activated conditionally based on a statistics-driven retraining algorithm that allows on the fly training and adaptation. A low-power analog implementation for the SNN classifier is proposed based on resistive crossbar memory exploiting its approximate computing nature. Owing to the direct mapping of SNN functionality using physical characteristics of devices, the analog mode implementation can achieve ∼21 × lower power than its fully digital counterpart. We also incorporate the effect of device variation in the training process to suppress the impact of inevitable inaccuracies in such resistive crossbar devices on the classification accuracy. A variation-aware, digitally calibrated analog front-end is also presented, which consumes less than ∼50 nW power and interfaces with the digital training module as well as the analog SNN spike sorting module. Hence, the proposed scheme is a low-power, variation-tolerant, adaptive, digitally trained, all-analog spike sorter device, applicable to implantable and wearable multichannel brain-machine interfaces.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biologically Inspired Spiking CNN for Brain Tumor Classification;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

2. NeuSort: an automatic adaptive spike sorting approach with neuromorphic models;Journal of Neural Engineering;2023-09-13

3. A survey and perspective on neuromorphic continual learning systems;Frontiers in Neuroscience;2023-05-04

4. Acoustic scene analysis using analog spiking neural network;Neuromorphic Computing and Engineering;2022-10-11

5. Classification of Whisker Deflections From Evoked Responses in the Somatosensory Barrel Cortex With Spiking Neural Networks;Frontiers in Neuroscience;2022-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3