Generalized algorithmic debugging and testing

Author:

Fritzson Peter,Shahmehri Nahid,Kamkar Mariam,Gyimothy Tibor

Abstract

This paper presents a method for semi-automatic bug localization, generalized algorithmic debugging, which has been integrated with the category partition method for functional testing. In this way the efficiency of the algorithmic debugging method for bug localization can be improved by using test specifications and test results. The long-range goal of this work is a semi-automatic debugging and testing system which can be used during large-scale program development of nontrivial programs. The method is generally applicable to procedural langua ges and is not dependent on any ad hoc assumptions regarding the subject program. The original form of algorithmic debugging, introduced by Shapiro, was however limited to small Prolog programs without side-effects, but has later been generalized to concurrent logic programming languages. Another drawback of the original method is the large number of interactions with the user during bug localization. To our knowledge, this is the first method which uses category partition testing to improve the bug localization properties of algorithmic debugging. The method can avoid irrelevant questions to the programmer by categorizing input parameters and then match these against test cases in the test database. Additionally, we use program slicing, a data flow analysis technique, to dynamically compute which parts of the program are relevant for the search, thus further improving bug localization. We believe that this is the first generalization of algorithmic debugging for programs with side-effects written in imperative languages such as Pascal. These improvements together makes it more feasible to debug larger programs. However, additional improvements are needed to make it handle pointer-related side-effects and concurrent Pascal programs. A prototype generalized algorithmic debugger for a Pascal subset without pointer side-effects and a test case generator for application programs in Pascal, C, dBase, and LOTUS have been implemented.

Publisher

Association for Computing Machinery (ACM)

Reference30 articles.

1. BANNING J.P. 1978. A method for determining the side effects of procedure calls. Ph.D. thesis Stanford Univ. Stanford Calif. BANNING J.P. 1978. A method for determining the side effects of procedure calls. Ph.D. thesis Stanford Univ. Stanford Calif.

2. Techniques for debugging parallel programs with flowback analysis

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Program Semantics for Vulnerability Detection via Vulnerability-Specific Inter-procedural Slicing;Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2023-11-30

2. Emerging Aspects of Software Fault Localization;Handbook of Software Fault Localization;2023-04-20

3. Spectrum-based multi-fault localization using Chaotic Genetic Algorithm;Information and Software Technology;2021-05

4. A unified framework for declarative debugging and testing;Information and Software Technology;2021-01

5. A Novel Approach of Software Fault Prediction Using Deep Learning Technique;Learning and Analytics in Intelligent Systems;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3