X-FSPMiner: A Novel Algorithm for Frequent Similar Pattern Mining

Author:

Rodríguez-González Ansel Y.1ORCID,Aranda Ramón2ORCID,Álvarez-Carmona Miguel Á.3ORCID,Díaz-Pacheco Angel4ORCID,Rosas Rosa María Valdovinos5ORCID

Affiliation:

1. Unidad de Transferencia Tecnológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Tepic, Mexico

2. Centro de Investigación en Matemáticas, A.C., Unidad Mérida, Mérida, Mexico

3. Centro de Investigación en Matemáticas, A.C., Unidad Monterrey, Monterrey, Mexico

4. Universidad de Guanajuato, División de Ingenierías, Campus Irapuato-Salamanca, Salamanca, Mexico

5. Facultad de Ingeniería, Universidad Autónoma del Estado de México, Toluca, Mexico

Abstract

Frequent similar pattern mining (FSP mining) allows for finding frequent patterns hidden from the classical approach. However, the use of similarity functions implies more computational effort, necessitating the development of more efficient algorithms for FSP mining. This work aims to improve the efficiency of mining all FSPs when using Boolean and non-increasing monotonic similarity functions. A data structure to condense an object description collection, named FV-Tree , and an algorithm for mining all FSPs from the FV-Tree , named X-FSPMiner , are proposed. The experimental results reveal that the novel algorithm X-FSPMiner vastly outperforms the state-of-the-art algorithms for mining all FSPs using Boolean and non-increasing monotonic similarity functions.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3