PEAL

Author:

Ayub Muhammad Kamran1,Hanif Muhammad Abdullah2,Hasan Osman1,Shafique Muhammad2

Affiliation:

1. School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology, Islamabad, Pakistan

2. Institute of Computer Engineering, Vienna University of Technology (TU Wien), Vienna, Austria

Abstract

Approximate computing has emerged as an efficient design approach for applications with inherent error resilience. Low-power approximate adders (LPAAs), for instance, IMPACT and InXA, are being advocated as building blocks for approximate computing hardware. For their practical adoption, the error caused by these units needs to be pre-evaluated and compared with maximum allowable error bounds for an application. To address this problem, we present PEAL, a Probabilistic error analysis methodology for Low-power Approximate Single and Multi-layered Adder Architectures , while considering variable probabilities for each bit of input operands for a given multi-bit adder design. PEAL is highly generic, linearly scalable, and applicable to any adder type. The analysis provides probability of success, which is accurate for single-layered adder architectures and provides a lower bound for multi-layered architectures. We have shown that state-of-the-art LPAAs can serve as effective building blocks of approximate computing only when the input probabilities are either very high (>0.8) or very low (<0.2). Interestingly, none of the state-of-the-art LPAA units, which to the best of our knowledge are the most widely adopted, has demonstrated effectiveness for mid-range probabilities (0.3–0.7). We have also analytically explained the cause of this usability limitation and proposed its solution. Moreover, we have proposed a method for estimating the Mean-squared Error of datapaths composed of LPAAs, to quantify the magnitude of error introduced in the output due to approximation of the adder units.

Funder

Erasmus+ International Credit Mobility

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference41 articles.

1. SEALPAA. [n.d.]. Retrieved from https://sourceforge.net/projects/sea SEALPAA. [n.d.]. Retrieved from https://sourceforge.net/projects/sea

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3