Grus

Author:

Wang Pengyu1,Wang Jing1,Li Chao1,Wang Jianzong2,Zhu Haojin1,Guo Minyi1

Affiliation:

1. Shanghai Jiao Tong University, Shanghai, China

2. Ping An Technology, Guangdong, China

Abstract

Today’s GPU graph processing frameworks face scalability and efficiency issues as the graph size exceeds GPU-dedicated memory limit. Although recent GPUs can over-subscribe memory with Unified Memory (UM), they incur significant overhead when handling graph-structured data. In addition, many popular processing frameworks suffer sub-optimal efficiency due to heavy atomic operations when tracking the active vertices. This article presents Grus, a novel system framework that allows GPU graph processing to stay competitive with the ever-growing graph complexity. Grus improves space efficiency through a UM trimming scheme tailored to the data access behaviors of graph workloads. It also uses a lightweight frontier structure to further reduce atomic operations. With easy-to-use interface that abstracts the above details, Grus shows up to 6.4× average speedup over the state-of-the-art in-memory GPU graph processing framework. It allows one to process large graphs of 5.5 billion edges in seconds with a single GPU.

Funder

National Key Research 8 Development Program of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference70 articles.

1. Andy Adinets. 2014. CUDA Pro Tip: Optimized Filtering with Warp-Aggregated Atomics | NVIDIA Developer Blog. Retrieved from https://developer.nvidia.com/blog/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/. Andy Adinets. 2014. CUDA Pro Tip: Optimized Filtering with Warp-Aggregated Atomics | NVIDIA Developer Blog. Retrieved from https://developer.nvidia.com/blog/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/.

2. Mosaic

3. MASK

4. Groute

5. SlimSell: A Vectorizable Graph Representation for Breadth-First Search

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3