Adaptive instantiation of the protocol interference model in wireless networked sensing and control

Author:

Zhang Hongwei1,Che Xin1,Liu Xiaohui1,Ju Xi1

Affiliation:

1. Wayne State University

Abstract

Interference model is the basis of MAC protocol design in wireless networked sensing and control, and it directly affects the efficiency and predictability of wireless messaging. To exploit the strengths of both the physical and the protocol interference models, we analyze how network traffic, link length, and wireless signal attenuation affect the optimal instantiation of the protocol model. We also identify the inherent trade-off between reliability and throughput in the model instantiation. Our analysis sheds light on the open problem of efficiently optimizing the protocol model instantiation. Based on the analytical results, we propose the physical-ratio-K (PRK) interference model as a reliability-oriented instantiation of the protocol model. Via analysis, simulation, and testbed-based measurement, we show that PRK-based scheduling achieves a network throughput very close to (e.g., 95%) what is enabled by physical-model-based scheduling while ensuring the required packet delivery reliability. The PRK model inherits both the high fidelity of the physical model and the locality of the protocol model, thus it is expected to be suitable for distributed protocol design. These findings shed new light on wireless interference models; they also suggest new approaches to MAC protocol design in the presence of uncertainties in network and environmental conditions as well as application QoS requirements.

Funder

Ford Foundation

General Motors Foundation

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3