Diversely-Supervised Visual Product Search

Author:

Thong William1,Snoek Cees G. M.1

Affiliation:

1. University of Amsterdam, Amsterdam, the Netherlands

Abstract

This article strives for a diversely supervised visual product search, where queries specify a diverse set of labels to search for. Where previous works have focused on representing attribute, instance, or category labels individually, we consider them together to create a diverse set of labels for visually describing products. We learn an embedding from the supervisory signal provided by every label to encode their interrelationships. Once trained, every label has a corresponding visual representation in the embedding space, which is an aggregation of selected items from the training set. At search time, composite query representations retrieve images that match a specific set of diverse labels. We form composite query representations by averaging over the aggregated representations of each diverse label in the specific set. For evaluation, we extend existing product datasets of cars and clothes with a diverse set of labels. Experiments show the benefits of our embedding for diversely supervised visual product search in seen and unseen product combinations and for discovering product design styles.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference82 articles.

1. Kenan E. Ak, Ashraf A. Kassim, Joo Hwee Lim, and Jo Yew Tham. 2018. Learning attribute representations with localization for flexible fashion search. In CVPR.

2. Kenan E. Ak, Joo Hwee Lim, Jo Yew Tham, and Ashraf A. Kassim. 2019. Attribute manipulation generative adversarial networks for fashion images. In ICCV.

3. Label-Embedding for Image Classification

4. Ziad Al-Halah, Rainer Stiefelhagen, and Kristen Grauman. 2017. Fashion forward: Forecasting visual style in fashion. In ICCV.

5. Learning visual similarity for product design with convolutional neural networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3