Efficient Enumeration Algorithms for Regular Document Spanners

Author:

Florenzano Fernando1,Riveros Cristian1,Ugarte Martín2,Vansummeren Stijn3,Vrgoč Domagoj1

Affiliation:

1. Pontificia Universidad Católica de Chile and IMFD Chile, Macul, Santiago, Chile

2. Université Libre de Bruxelles and IMFD Chile, Macul, Santiago, Chile

3. Université Libre de Bruxelles, Brussels, Belgium

Abstract

Regular expressions and automata models with capture variables are core tools in rule-based information extraction. These formalisms, also called regular document spanners , use regular languages to locate the data that a user wants to extract from a text document and then store this data into variables. Since document spanners can easily generate large outputs, it is important to have efficient evaluation algorithms that can generate the extracted data in a quick succession, and with relatively little precomputation time. Toward this goal, we present a practical evaluation algorithm that allows output-linear delay enumeration of a spanner’s result after a precomputation phase that is linear in the document. Although the algorithm assumes that the spanner is specified in a syntactic variant of variable-set automata, we also study how it can be applied when the spanner is specified by general variable-set automata, regex formulas, or spanner algebras. Finally, we study the related problem of counting the number of outputs of a document spanner and provide a fine-grained analysis of the classes of document spanners that support efficient enumeration of their results.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Innoviris

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference28 articles.

1. A very hard log-space counting class

2. A framework for annotating CSV-like data

3. Lecture Notes in Computer Science;Bagan Guillaume

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Demonstrating REmatch: A Novel RegEx Engine for Finding all Matches;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Generalized Core Spanner Inexpressibility via Ehrenfeucht-Fraïssé Games for FC;Proceedings of the ACM on Management of Data;2024-05-10

3. The Information Extraction Framework of Document Spanners - A Very Informal Survey;Lecture Notes in Computer Science;2024

4. Modeling Regex Operators for Solving Regex Crossword Puzzles;Dependable Software Engineering. Theories, Tools, and Applications;2023-12-15

5. REmatch: A Novel Regex Engine for Finding All Matches;Proceedings of the VLDB Endowment;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3