Dictionary Fields: Learning a Neural Basis Decomposition

Author:

Chen Anpei12ORCID,Xu Zexiang3ORCID,Wei Xinyue4ORCID,Tang Siyu1ORCID,Su Hao4ORCID,Geiger Andreas25ORCID

Affiliation:

1. ETH Zürich, Zürich, Switzerland

2. University of Tübingen, Tübingen, Germany

3. Adobe Research, San Jose, United States of America

4. UCSD, San Diego, United States of America

5. Tübingen AI Center, Tübingen, Germany

Abstract

We present Dictionary Fields, a novel neural representation which decomposes a signal into a product of factors, each represented by a classical or neural field representation, operating on transformed input coordinates. More specifically, we factorize a signal into a coefficient field and a basis field, and exploit periodic coordinate transformations to apply the same basis functions across multiple locations and scales. Our experiments show that Dictionary Fields lead to improvements in approximation quality, compactness, and training time when compared to previous fast reconstruction methods. Experimentally, our representation achieves better image approximation quality on 2D image regression tasks, higher geometric quality when reconstructing 3D signed distance fields, and higher compactness for radiance field reconstruction tasks. Furthermore, Dictionary Fields enable generalization to unseen images/3D scenes by sharing bases across signals during training which greatly benefits use cases such as image regression from partial observations and few-shot radiance field reconstruction.

Funder

SNF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference81 articles.

1. Eirikur Agustsson and Radu Timofte . 2017 . NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. Eirikur Agustsson and Radu Timofte. 2017. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study.

2. Nasir Ahmed , T_ Natarajan, and Kamisetty R Rao . 1974. Discrete cosine transform . IEEE transactions on Computers ( 1974 ). Nasir Ahmed, T_ Natarajan, and Kamisetty R Rao. 1974. Discrete cosine transform. IEEE transactions on Computers (1974).

3. Kara-Ali Aliev , Dmitry Ulyanov , and Victor S . Lempitsky . 2019 . Neural Point-Based Graphics . arXiv.org 1906.08240 (2019). Kara-Ali Aliev, Dmitry Ulyanov, and Victor S. Lempitsky. 2019. Neural Point-Based Graphics. arXiv.org 1906.08240 (2019).

4. Jonathan T. Barron Ben Mildenhall Dor Verbin Pratul P. Srinivasan and Peter Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In CVPR. Jonathan T. Barron Ben Mildenhall Dor Verbin Pratul P. Srinivasan and Peter Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In CVPR.

5. Sai Bi , Zexiang Xu , Pratul P. Srinivasan , Ben Mildenhall , Kalyan Sunkavalli , Milos Hasan , Yannick Hold-Geoffroy , David J. Kriegman , and Ravi Ramamoorthi . 2020a. Neural Reflectance Fields for Appearance Acquisition. arXiv.org 2008 .03824 (2020). Sai Bi, Zexiang Xu, Pratul P. Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Milos Hasan, Yannick Hold-Geoffroy, David J. Kriegman, and Ravi Ramamoorthi. 2020a. Neural Reflectance Fields for Appearance Acquisition. arXiv.org 2008.03824 (2020).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rip-NeRF: Anti-aliasing Radiance Fields with Ripmap-Encoded Platonic Solids;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. Real‐Time Neural Materials using Block‐Compressed Features;Computer Graphics Forum;2024-04-23

3. Efficient Approximate Online Convolutional Dictionary Learning;IEEE Transactions on Computational Imaging;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3