Enhanced 3D Shape Reconstruction With Knowledge Graph of Category Concept

Author:

Sun Guofei1,Wong Yongkang2ORCID,Kankanhalli Mohan S.2ORCID,Li Xiangdong1,Geng Weidong1

Affiliation:

1. Zhejiang University, Hangzhou, Zhejiang, China

2. National University of Singapore, Singapore

Abstract

Reconstructing three-dimensional (3D) objects from images has attracted increasing attention due to its wide applications in computer vision and robotic tasks. Despite the promising progress of recent deep learning–based approaches, which directly reconstruct the full 3D shape without considering the conceptual knowledge of the object categories, existing models have limited usage and usually create unrealistic shapes. 3D objects have multiple forms of representation, such as 3D volume, conceptual knowledge, and so on. In this work, we show that the conceptual knowledge for a category of objects, which represents objects as prototype volumes and is structured by graph, can enhance the 3D reconstruction pipeline. We propose a novel multimodal framework that explicitly combines graph-based conceptual knowledge with deep neural networks for 3D shape reconstruction from a single RGB image. Our approach represents conceptual knowledge of a specific category as a structure-based knowledge graph. Specifically, conceptual knowledge acts as visual priors and spatial relationships to assist the 3D reconstruction framework to create realistic 3D shapes with enhanced details. Our 3D reconstruction framework takes an image as input. It first predicts the conceptual knowledge of the object in the image, then generates a 3D object based on the input image and the predicted conceptual knowledge. The generated 3D object satisfies the following requirements: (1) it is consistent with the predicted graph in concept, and (2) consistent with the input image in geometry. Extensive experiments on public datasets (i.e.,  ShapeNet, Pix3D, and Pascal3D+) with 13 object categories show that (1) our method outperforms the state-of-the-art methods, (2) our prototype volume-based conceptual knowledge representation is more effective, and (3) our pipeline-agnostic approach can enhance the reconstruction quality of various 3D shape reconstruction pipelines.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference77 articles.

1. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. tensorflow: A system for large-scale machine learning. In USENIX Symposium on Operating Systems Design and Implementation. 265–283.

2. Full 3D Reconstruction of Non-Rigidly Deforming Objects

3. Synthesizing 3D Shapes via Modeling Multi-view Depth Maps and Silhouettes with Deep Generative Networks

4. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age

5. shapenet: An information-rich 3D model repository;Chang Angel X.;arXiv:1512.03012,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3