A New Algorithm for Fast Generalized DFTs

Author:

Hsu Chloe Ching-Yun1,Umans Chris1

Affiliation:

1. Caltech, CA, USA

Abstract

We give an new arithmetic algorithm to compute the generalized Discrete Fourier Transform (DFT) over finite groups G . The new algorithm uses O (∣ G ω /2 + o (1) ) operations to compute the generalized DFT over finite groups of Lie type, including the linear, orthogonal, and symplectic families and their variants, as well as all finite simple groups of Lie type. Here ω is the exponent of matrix multiplication, so the exponent ω/2 is optimal if ω = 2. Previously, “exponent one” algorithms were known for supersolvable groups and the symmetric and alternating groups. No exponent one algorithms were known, even under the assumption ω = 2, for families of linear groups of fixed dimension, and indeed the previous best-known algorithm for SL 2 (F q ) had exponent 4/3 despite being the focus of significant effort. We unconditionally achieve exponent at most 1.19 for this group and exponent one if ω = 2. Our algorithm also yields an improved exponent for computing the generalized DFT over general finite groups G , which beats the longstanding previous best upper bound for any ω. In particular, assuming ω = 2, we achieve exponent √ 2, while the previous best was 3/2.

Funder

Simons Foundation

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Generalized DFTs for All Finite Groups;SIAM Journal on Computing;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3