Bandwidth Measurements within the Cloud

Author:

García-Dorado José Luis1

Affiliation:

1. Universidad Técnica del Norte, Ibarra, Ecuador

Abstract

The search for availability, reliability, and quality of service has led cloud infrastructure customers to disseminate their services, contents, and data over multiple cloud data centers, often involving several Cloud service providers (CSPs). The consequence of this is that a large amount of data must be transmitted across the public Cloud. However, little is known about the bandwidth dynamics involved. To address this, we have conducted a measurement campaign for bandwidth between 18 data centers of four major CSPs. This extensive campaign allowed us to characterize the resulting time series of bandwidth as the addition of a stationary component and some infrequent excursions (typically downtimes). While the former provides a description of the bandwidth users can expect in the Cloud, the latter is closely related to the robustness of the Cloud (i.e., the occurrence of downtimes is correlated). Both components have been studied further by applying factor analysis, specifically analysis of variance, as a mechanism to formally compare data centers’ behaviors and extract generalities. The results show that the stationary process is closely related to the data center locations and CSPs involved in transfers that, fortunately, make the Cloud more predictable and allow the set of reported measurements to be extrapolated. On the other hand, although correlation in the Cloud is low, that is, only 10% of the measured pair of paths showed some correlation, we found evidence that such correlation depends on the particular relationships between pairs of data centers with little connection to more general factors. Positively, this implies that data centers either in the same area or within the same CSP do not show qualitatively more correlation than other data centers, which eases the deployment of robust infrastructures. On the downside, this metric is scarcely generalizable and, consequently, calls for exhaustive monitoring.

Funder

Innovation of the Republic of Ecuador

Prometeo project of the Secretariat for Higher Education, Science, Technology

UTN-CUICYT-177 project Characterization of Correlated Performance in the Cloud

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference43 articles.

1. Performance analysis of modern TCP variants: A comparison of Cubic, Compound and New Reno

2. Cloud monitoring: A survey

3. Alexa. 2016. Top Sites in the Cloud. Retrieved from http://www.alexa.com/topsites/category/Top/Computers/Internet/Cloud_Computing. Alexa. 2016. Top Sites in the Cloud. Retrieved from http://www.alexa.com/topsites/category/Top/Computers/Internet/Cloud_Computing.

4. Exploring the cloud from passive measurements: The Amazon AWS case

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3