Autocomplete painting repetitions

Author:

Xing Jun1,Chen Hsiang-Ting2,Wei Li-Yi1

Affiliation:

1. Univ. Hong Kong

2. Hasso Plattner Institute

Abstract

Painting is a major form of content creation, offering unlimited control and freedom of expression. However, it can involve tedious manual repetitions, such as stippling large regions or hatching complex contours. Thus, a central goal in digital painting research is to automate tedious repetitions while allowing user control. Existing methods impose a sequential order, in which a small exemplar is prepared and then cloned through additional gestures. Such sequential mode may break the continuous, spontaneous flow of painting. Moreover, it is more suitable for homogeneous areas than nuanced variations common in real paintings. We present an interactive digital painting system that auto-completes tedious repetitions while preserving nuanced variations and maintaining natural flows. Specifically, users paint as usual, while our system records and analyzes their workflows. When potential repetition is detected, our system predicts what the user might want to draw and offers auto-completes that adjust to the existing shape-color context. Our method eliminates the need for sequential creation-cloning and better adapts to the local painting contexts. Furthermore, users can choose to accept, ignore, or modify those predictions and thus maintain full control. Our method can be considered as the painting analogy of auto-completes in common typing and IDE systems. We demonstrate the quality and usability of our system through painting results and a pilot user study.

Funder

Dynamic Element Textures

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fully automatic adjacent key-points localization framework for minimal repeated pattern detection in printed fabric images;Knowledge-Based Systems;2024-09

2. Ciallo: GPU-Accelerated Rendering of Vector Brush Strokes;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

3. MathAssist: A Handwritten Mathematical Expression Autocomplete Technique;Proceedings of the 29th International Conference on Intelligent User Interfaces;2024-03-18

4. AI for Supporting the Freedom of Drawing;Machine Intelligence Research;2024-01-15

5. EvIcon: Designing High‐Usability Icon with Human‐in‐the‐loop Exploration and IconCLIP;Computer Graphics Forum;2023-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3