Strict minimizers for geometric optimization

Author:

Levi Zohar1,Zorin Denis1

Affiliation:

1. New York University

Abstract

We introduce the idea of strict minimizers for geometric distortion measures used in shape interpolation, deformation, parametrization, and other applications involving geometric mappings. The L -norm ensures the tightest possible control on the worst-case distortion. Unfortunately, it does not yield a unique solution and does not distinguish between solutions with high or low distortion below the maximum. The strict minimizer is a minimal L -norm solution, which always prioritizes higher distortion reduction. We propose practical algorithms for computing strict minimizers. We also offer an efficient algorithm for L optimization based on the ARAP energy. This algorithm can be used on its own or as a building block for an ARAP strict minimizer. We demonstrate that these algorithms lead to significant improvements in quality.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference42 articles.

1. Abdelmalek N. N. 1977. Computing the strict Chebyshev solution of overdetermined linear equations. Mathematics of Computation 31 140 974--983. Abdelmalek N. N. 1977. Computing the strict Chebyshev solution of overdetermined linear equations. Mathematics of Computation 31 140 974--983.

2. Injective and bounded distortion mappings in 3D

3. Alexa M. Cohen-Or D. and Levin D. 2000. As-rigid-as-possible shape interpolation. In Computer graphics and interactive techniques 157--164. 10.1145/344779.344859 Alexa M. Cohen-Or D. and Levin D. 2000. As-rigid-as-possible shape interpolation. In Computer graphics and interactive techniques 157--164. 10.1145/344779.344859

4. On implementing a primal-dual interior-point method for conic quadratic optimization

5. A simplex based algorithm for the lexicographically extended linear maxmin problem

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In the Quest for Scale-optimal Mappings;ACM Transactions on Graphics;2024-01-03

2. Seamless Parametrization with Cone and Partial Loop Control;ACM Transactions on Graphics;2023-08-30

3. Shear-reduced seamless parametrization;Computer Aided Geometric Design;2023-04

4. A Practical Algorithm for Max-Norm Optimal Binary Labeling of Graphs;Graph-Based Representations in Pattern Recognition;2023

5. Isometric Energies for Recovering Injectivity in Constrained Mapping;SIGGRAPH Asia 2022 Conference Papers;2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3