Multi-Source Deep Domain Adaptation with Weak Supervision for Time-Series Sensor Data
Author:
Affiliation:
1. Washington State University, Pullman, WA, USA
Funder
National Science Foundation
National Institutes of Health
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3394486.3403228
Reference43 articles.
1. D. Anguita A. Ghio L. Oneto X. Parra and J. L. Reyes-Ortiz. 2013. A public domain dataset for human activity recognition using smartphones. In ESANN. D. Anguita A. Ghio L. Oneto X. Parra and J. L. Reyes-Ortiz. 2013. A public domain dataset for human activity recognition using smartphones. In ESANN.
2. S. Bai J. Z. Kolter etal 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271(2018). S. Bai J. Z. Kolter et al. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271(2018).
3. A theory of learning from different domains
4. K. Bousmalis etal 2017. Unsupervised Pixel-Level Domain Adaptation With Generative Adversarial Networks. In CVPR. K. Bousmalis et al. 2017. Unsupervised Pixel-Level Domain Adaptation With Generative Adversarial Networks. In CVPR.
Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Time-series domain adaptation via sparse associative structure alignment: Learning invariance and variance;Neural Networks;2024-12
2. Kernelized Bures metric: A framework for effective domain adaptation in sensor data analysis;Expert Systems with Applications;2024-12
3. A source-free unsupervised domain adaptation method for cross-regional and cross-time crop mapping from satellite image time series;Remote Sensing of Environment;2024-12
4. Integrating multimodal contrastive learning with prototypical domain alignment for unsupervised domain adaptation of time series;Engineering Applications of Artificial Intelligence;2024-11
5. Inter-seasons and Inter-households Domain Adaptation Based on DANNs and Pseudo Labeling for Non-Intrusive Occupancy Detection;Transactions of the Japanese Society for Artificial Intelligence;2024-09-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3