Measuring Model Complexity of Neural Networks with Curve Activation Functions
Author:
Affiliation:
1. Simon Fraser University, Burnaby, BC, Canada
2. Microsoft Research, Beijing, China
Funder
NSERC Discovery Grant
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3394486.3403203
Reference35 articles.
1. Universal approximation bounds for superpositions of a sigmoidal function
2. On the Expressive Power of Deep Architectures
3. Monica Bianchini and Franco Scarselli. 2014. On the complexity of shallow and deep neural network classifiers. In ESANN. Monica Bianchini and Franco Scarselli. 2014. On the complexity of shallow and deep neural network classifiers. In ESANN.
4. Christopher M Bishop. 2006. Pattern recognition and machine learning .springer. Christopher M Bishop. 2006. Pattern recognition and machine learning .springer.
5. Chung-Cheng Chiu Tara N Sainath Yonghui Wu Rohit Prabhavalkar etal 2018. State-of-the-art speech recognition with sequence-to-sequence models. In 2018 IEEE ICASSP. IEEE 4774--4778. Chung-Cheng Chiu Tara N Sainath Yonghui Wu Rohit Prabhavalkar et al. 2018. State-of-the-art speech recognition with sequence-to-sequence models. In 2018 IEEE ICASSP. IEEE 4774--4778.
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Achieving Sharp Upper Bounds on the Expressive Power of Neural Networks via Tropical Polynomials;IEEE Transactions on Neural Networks and Learning Systems;2024
2. CDBMA: Community Detection in Heterogeneous Networks Based on Multi-attention Mechanism;Communications in Computer and Information Science;2023-11-15
3. Fault detection and diagnosis using two-stage attention-based variational LSTM in electrolytic copper manufacturing process;The International Journal of Advanced Manufacturing Technology;2023-09-27
4. Optimization of deep learning models: benchmark and analysis;Advances in Computational Intelligence;2023-03-30
5. A literature survey of MR-based brain tumor segmentation with missing modalities;Computerized Medical Imaging and Graphics;2023-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3