Affiliation:
1. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Abstract
When people search for information about a new topic within large document collections, they implicitly construct a mental model of the unfamiliar information space to represent what they currently know and guide their exploration into the unknown. Building this mental model can be challenging as it requires not only finding relevant documents but also synthesizing important concepts and the relationships that connect those concepts both within and across documents. This article describes a novel interactive approach designed to help users construct a mental model of an unfamiliar information space during exploratory search. We propose a new semantic search system to organize and visualize important concepts and their relations for a set of search results. A user study (n=20) was conducted to compare the proposed approach against a baseline faceted search system on exploratory literature search tasks. Experimental results show that the proposed approach is more effective in helping users recognize relationships between key concepts, leading to a more sophisticated understanding of the search topic while maintaining similar functionality and usability as a faceted search system.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Human-Computer Interaction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献