ReFlex

Author:

Klimovic Ana1,Litz Heiner1,Kozyrakis Christos1

Affiliation:

1. Stanford University, Stanford, CA, USA

Abstract

Remote access to NVMe Flash enables flexible scaling and high utilization of Flash capacity and IOPS within a datacenter. However, existing systems for remote Flash access either introduce significant performance overheads or fail to isolate the multiple remote clients sharing each Flash device. We present ReFlex, a software-based system for remote Flash access, that provides nearly identical performance to accessing local Flash. ReFlex uses a dataplane kernel to closely integrate networking and storage processing to achieve low latency and high throughput at low resource requirements. Specifically, ReFlex can serve up to 850K IOPS per core over TCP/IP networking, while adding 21us over direct access to local Flash. ReFlex uses a QoS scheduler that can enforce tail latency and throughput service-level objectives (SLOs) for thousands of remote clients. We show that ReFlex allows applications to use remote Flash while maintaining their original performance with local Flash.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference76 articles.

1. IX-project: protected dataplane for low latency and high performance. https://github.com/ix-project 2016. IX-project: protected dataplane for low latency and high performance. https://github.com/ix-project 2016.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DistMind: Efficient Resource Disaggregation for Deep Learning Workloads;IEEE/ACM Transactions on Networking;2024-06

2. RiF: Improving Read Performance of Modern SSDs Using an On-Die Early-Retry Engine;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

3. FIDR;Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture;2019-10-12

4. FlashNet;ACM Transactions on Storage;2018-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3