Fast and Accurate Proper Orthogonal Decomposition using Efficient Sampling and Iterative Techniques for Singular Value Decomposition

Author:

Charumathi V.1ORCID,Ramakrishna M.1ORCID,Vasudevan Vinita1ORCID

Affiliation:

1. Indian Institute of Technology, Tamilnadu, India

Abstract

In this article, we propose a computationally efficient iterative algorithm for proper orthogonal decomposition (POD) using random sampling based techniques. In this algorithm, additional rows and columns are sampled and a merging technique is used to update the dominant POD modes in each iteration. We derive bounds for the spectral norm of the error introduced by a series of merging operations. We use an existing theorem to get an approximate measure of the quality of subspaces obtained on convergence of the iteration. Results on various datasets indicate that the POD modes and/or the subspaces are approximated with excellent accuracy with a significant runtime improvement over computing the truncated SVD. We also propose a method to compute the POD modes of large matrices that do not fit in the RAM using this iterative sampling and merging algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference44 articles.

1. Fast computation of low-rank matrix approximations

2. Zheng-Jian Bai, Raymond H. Chan, and Franklin T. Luk. 2005. Principal component analysis for distributed data sets with updating. In Advanced Parallel Processing Technologies. Jiannong Cao, Wolfgang Nejdl, and Ming Xu (Eds.), Springer, Berlin, 471–483.

3. Low-rank incremental methods for computing dominant singular subspaces

4. Numerical Methods in Matrix Computations

5. Numerical Methods for Computing Angles Between Linear Subspaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3