Pliability and Approximating Max-CSPs

Author:

Romero Miguel1ORCID,Wrochna Marcin2ORCID,Živný Stanislav3ORCID

Affiliation:

1. Pontificia Universidad Católica de Chile, Chile

2. University of Warsaw, Poland

3. University of Oxford, United Kingdom

Abstract

We identify a sufficient condition, treewidth-pliability , that gives a polynomial-time algorithm for an arbitrarily good approximation of the optimal value in a large class of Max-2-CSPs parameterised by the class of allowed constraint graphs (with arbitrary constraints on an unbounded alphabet). Our result applies more generally to the maximum homomorphism problem between two rational-valued structures. The condition unifies the two main approaches for designing a polynomial-time approximation scheme. One is Baker’s layering technique, which applies to sparse graphs such as planar or excluded-minor graphs. The other is based on Szemerédi’s regularity lemma and applies to dense graphs. We extend the applicability of both techniques to new classes of Max-CSPs. However, we prove that the condition cannot be used to find solutions (as opposed to approximating the optimal value) in general. Treewidth-pliability turns out to be a robust notion that can be defined in several equivalent ways, including characterisations via size, treedepth, or the Hadwiger number. We show connections to the notions of fractional-treewidth-fragility from structural graph theory, hyperfiniteness from the area of property testing, and regularity partitions from the theory of dense graph limits. These may be of independent interest. In particular, we show that a monotone class of graphs is hyperfinite if and only if it is fractionally-treewidth-fragile and has bounded degree.

Funder

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3