Efficient concurrency control in multidimensional access methods

Author:

Chakrabarti Kaushik1,Mehrotra Sharad2

Affiliation:

1. Department of Computer Science, University of Illinois at Urbana-Champaign

2. Department of Information and Computer Science, University of California at Irvine

Abstract

The importance of multidimensional index structures to numerous emerging database applications is well established. However, before these index structures can be supported as access methods (AMs) in a “commercial-strength” database management system (DBMS), efficient techniques to provide transactional access to data via the index structure must be developed. Concurrent accesses to data via index structures introduce the problem of protecting ranges specified in the retrieval from phantom insertions and deletions (the phantom problem ). This paper presents a dynamic granular locking approach to phantom protection in Generalized Search Trees(GiSTs), an index structure supporting an extensible set of queries and data types. The granular locking technique offers a high degree of concurrency and has a low lock overhead. Our experiments show that the granular locking technique (1) scales well under various system loads and (2) similar to the B-tree case, provides a significantly more efficient implementation compared to predicate locking for multidimensional AMs as well. Since a wide variety of multidimensional index structures can be implemented using GiST, the developed algorithms provide a general solution to concurrency control in multidimensional AMs. To the best of our knowledge, this paper provides the first such solution based on granular locking.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploiting hashing for concurrent query processing and indexing of current location of moving objects;Concurrency and Computation: Practice and Experience;2024-01-03

2. Processing of extreme moving-object update and query workloads in main memory;The VLDB Journal;2014-03-12

3. On the Recovery of R-Trees;IEEE Transactions on Knowledge and Data Engineering;2013-01

4. Multiversion concurrency control for the generalized search tree;Concurrency and Computation: Practice and Experience;2009-08-25

5. GLIP: A Concurrency Control Protocol for Clipping Indexing;IEEE Transactions on Knowledge and Data Engineering;2009-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3