Update propagation protocols for replicated databates

Author:

Breitbart Yuri1,Komondoor Raghavan2,Rastogi Rajeev1,Seshadri S.1,Silberschatz Avi1

Affiliation:

1. Bell Laboratories, Murray Hill, NJ

2. University Of Wisconsin, Madison, WI

Abstract

Replication is often used in many distributed systems to provide a higher level of performance, reliability and availability. Lazy replica update protocols, which propagate updates to replicas through independent transactions after the original transaction commits, have become popular with database vendors due to their superior performance characteristics. However, if lazy protocols are used indiscriminately, they can result in non-serializable executions. In this paper, we propose two new lazy update protocols that guarantee serializability but impose a much weaker requirement on data placement than earlier protocols. Further, many naturally occurring distributed systems, like distributed data warehouses, satisfy this requirement. We also extend our lazy update protocols to eliminate all requirements on data placement. The extension is a hybrid protocol that propagates as many updates as possible in a lazy fashion. We implemented our protocols on the Datablitz database system product developed at Bell Labs. We also conducted an extensive performance study which shows that our protocols outperform existing protocols over a wide range of workloads.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 60 Years of Databases (part three);PROBLEMS IN PROGRAMMING;2022-03

2. Harmonia;Proceedings of the VLDB Endowment;2019-11

3. Implementation of micro application storage with high reliability based on Oracle 12c;MATEC Web of Conferences;2019

4. Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory databases;The VLDB Journal;2018-04-16

5. Optimistic Replication and Resolution;Encyclopedia of Database Systems;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3