DynaMat

Author:

Kotidis Yannis1,Roussopoulos Nick1

Affiliation:

1. Department of Computer Science, University of Maryland

Abstract

Pre-computation and materialization of views with aggregate functions is a common technique in Data Warehouses. Due to the complex structure of the warehouse and the different profiles of the users who submit queries, there is need for tools that will automate the selection and management of the materialized data. In this paper we present DynaMat, a system that dynamically materializes information at multiple levels of granularity in order to match the demand (workload) but also takes into account the maintenance restrictions for the warehouse, such as down time to update the views and space availability. DynaMat unifies the view selection and the view maintenance problems under a single framework using a novel “goodness” measure for the materialized views. DynaMat constantly monitors incoming queries and materializes the best set of views subject to the space constraints. During updates, DynaMat reconciles the current materialized view selection and refreshes the most beneficial subset of it within a given maintenance window. We compare DynaMat against a system that is given all queries in advance and the pre-computed optimal static view selection. The comparison is made based on a new metric, the Detailed Cost Savings Ratio introduced for quantifying the benefits of view materialization against incoming queries. These experiments show that DynaMat's dynamic view selection outperforms the optimal static view selection and thus, any sub-optimal static algorithm that has appeared in the literature.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference30 articles.

1. ACT Inc. The Cubetree Datablade. http://www.act-us.com August 1997. ACT Inc. The Cubetree Datablade. http://www.act-us.com August 1997.

2. AutoAdmin Project Database Group Microsoft Research. AutoAdmin Project Database Group Microsoft Research.

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Saving Money for Analytical Workloads in the Cloud;Proceedings of the VLDB Endowment;2024-07

2. HYPPO: Using Equivalences to Optimize Pipelines in Exploratory Machine Learning;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Signature Proxy: An Efficient View Management Under Distributed Architecture;Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing;2023

4. SageDB;Proceedings of the VLDB Endowment;2022-09

5. Evolutionary Optimization for Prioritized Materialized View Selection;International Journal of Information Retrieval Research;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3