Affiliation:
1. University of Illinois at Urbana-Champaign
Abstract
Browsing large audio archives is challenging because of the limitations of human audition and attention. However, this task becomes easier with a suitable visualization of the audio signal, such as a spectrogram transformed to make unusual audio events salient. This transformation maximizes the mutual information between an isolated event's spectrogram and an estimate of how salient the event appears in its surrounding context. When such spectrograms are computed and displayed with fluid zooming over many temporal orders of magnitude, sparse events in long audio recordings can be detected more quickly and more easily. In particular, in a 1/10-real-time acoustic event detection task, subjects who were shown saliency-maximized rather than conventional spectrograms performed significantly better. Saliency maximization also improves the mutual information between the ground truth of nonbackground sounds and visual saliency, more than other common enhancements to visualization.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science