Affiliation:
1. MINES ParisTech, France / PSL Research University, France
2. TU Dresden, Germany
3. Inria, France / ENS, France
Abstract
Many modern application domains crucially rely on tensor operations. The optimization of programs that operate on tensors poses difficulties that are not adequately addressed by existing languages and tools. Frameworks such as TensorFlow offer good abstractions for tensor operations, but target a specific domain, i.e. machine learning, and their optimization strategies cannot easily be adjusted to other domains. General-purpose optimization tools such as Pluto and existing meta-languages offer more flexibility in applying optimizations but lack abstractions for tensors. This work closes the gap between domain-specific tensor languages and general-purpose optimization tools by proposing the Tensor optimizations Meta-Language (TeML). TeML offers high-level abstractions for both tensor operations and loop transformations, and enables flexible composition of transformations into effective optimization paths. This compositionality is built into TeML's design, as our formal language specification will reveal. We also show that TeML can express tensor computations as comfortably as TensorFlow and that it can reproduce Pluto's optimization paths. Thus, optimized programs generated by TeML execute at least as fast as the corresponding Pluto programs. In addition, TeML enables optimization paths that often allow outperforming Pluto.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Reference38 articles.
1. 2017. NumPy package for scientific computing with Python. http: //www.numpy.org/ . 2017. NumPy package for scientific computing with Python. http: //www.numpy.org/ .
2. Martín Abadi and Ashish Agarwal et al. 2015. TensorFlow: LargeScale Machine Learning on Heterogeneous Distributed Systems. http://download.tensorflow.org/paper/whitepaper2015.pdf. Martín Abadi and Ashish Agarwal et al. 2015. TensorFlow: LargeScale Machine Learning on Heterogeneous Distributed Systems. http://download.tensorflow.org/paper/whitepaper2015.pdf.
3. Unified form language
4. Opening polyhedral compiler's black box
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献