Defending wireless sensor networks from radio interference through channel adaptation

Author:

Xu Wenyuan1,Trappe Wade2,Zhang Yanyong2

Affiliation:

1. University of South Carolina, Columbia, SC

2. WINLAB, Rutgers University, North Brunswick, NJ

Abstract

Radio interference, whether intentional or otherwise, represents a serious threat to assuring the availability of sensor network services. As such, techniques that enhance the reliability of sensor communications in the presence of radio interference are critical. In this article, we propose to cope with this threat through a technique called channel surfing, whereby the sensor nodes in the network adapt their channel assignments to restore network connectivity in the presence of interference. We explore two different approaches to channel surfing: coordinated channel switching, in which the entire sensor network adjusts its channel; and spectral multiplexing, in which nodes in a jammed region switch channels and nodes on the boundary of a jammed region act as radio relays between different spectral zones. For coordinated channel switching, we examine an autonomous strategy where each node detects the loss of its neighbors in order to initiate channel switching. To cope with latency issues in the autonomous strategy, we propose a broadcast-assisted channel switching strategy to more rapidly coordinate channel switching. For spectral multiplexing, we have devised both synchronous and asynchronous strategies to facilitate the scheduling of nodes in order to improve network fidelity when sensor nodes operate on multiple channels. In designing these algorithms, we have taken a system-oriented approach that has focused on exploring actual implementation issues under realistic network settings. We have implemented these proposed methods on a testbed of 30 Mica2 sensor nodes, and the experimental results show that channel surfing, in its various forms, is an effective technique for repairing network connectivity in the presence of radio interference, while not introducing significant performance-overhead.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding and Mitigating the Impact of Wi-Fi 6E Interference on Ultra-Wideband Communications and Ranging;2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN);2022-05

2. Communication Jamming in Body Sensor Network: A Review;2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART);2021-12-10

3. Anti‐jamming communication for body area network using chaotic frequency hopping;Healthcare Technology Letters;2017-11-13

4. Robust multiple frequency multiple power localization schemes in the presence of multiple jamming attacks;PLOS ONE;2017-05-11

5. Interference-Robust Transmission in Wireless Sensor Networks;Sensors;2016-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3