Effect of scenario on perceptual sensitivity to errors in animation

Author:

Reitsma Paul S. A.1,O'Sullivan Carol1

Affiliation:

1. Trinity College Dublin

Abstract

A deeper understanding of what makes animation perceptually plausible would benefit a number of applications, such as approximate collision detection and goal-directed animation. In a series of psychophysical experiments, we examine how measurements of perceptual sensitivity in realistic physical simulations compare to similar measurements done in more abstract settings. We find that participant tolerance for certain types of errors is significantly higher in a realistic snooker scenario than in the abstract test settings previously used to examine those errors. By contrast, we find tolerance for errors displayed in realistic but more neutral environments was not different from tolerance for those errors in abstract settings. Additionally, we examine the interaction of auditory and visual cues in determining participant sensitivity to spatiotemporal errors in rigid body collisions. We find that participants are predominantly affected by visual cues. Finally, we find that tolerance for spatial gaps during collision events is constant for a wide range of viewing angles if the effect of foreshortening and occlusion caused by the viewing angle is taken into account.

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ViCMA: Visual Control of Multibody Animations;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

2. Evaluating Study Design and Strategies for Mitigating the Impact of Hand Tracking Loss;ACM Symposium on Applied Perception 2021;2021-09-16

3. Intuitive physics and cognitive algebra: A review;European Review of Applied Psychology;2021-09

4. Perceptual effect of shoulder motions on crowd animations;ACM Transactions on Graphics;2016-07-11

5. Effect of Low-level Visual Details in Perception of Deformation;Computer Graphics Forum;2016-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3