Recognizing Human Actions with Outlier Frames by Observation Filtering and Completion

Author:

Lin Shih-Yao1,Lin Yen-Yu2,Chen Chu-Song2,Hung Yi-Ping3

Affiliation:

1. National Taiwan University, CA, USA

2. Academia Sinica, Taipei, Taiwan

3. Tainan National University of the Arts, Tainan City, Taiwan

Abstract

This article addresses the problem of recognizing partially observed human actions. Videos of actions acquired in the real world often contain corrupt frames caused by various factors. These frames may appear irregularly, and make the actions only partially observed. They change the appearance of actions and degrade the performance of pretrained recognition systems. In this article, we propose an approach to address the corrupt-frame problem without knowing their locations and durations in advance. The proposed approach includes two key components: outlier filtering and observation completion . The former identifies and filters out unobserved frames, and the latter fills up the filtered parts by retrieving coherent alternatives from training data. Hidden Conditional Random Fields (HCRFs) are then used to recognize the filtered and completed actions. Our approach has been evaluated on three datasets, which contain both fully observed actions and partially observed actions with either real or synthetic corrupt frames. The experimental results show that our approach performs favorably against the other state-of-the-art methods, especially when corrupt frames are present.

Funder

Ministry of Science and Technology of the Republic of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Domain Knowledge Transfer for Skeleton-based Action Recognition based on Graph Convolutional Gradient Reversal Layer;2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR);2022-08

2. Online Early-Late Fusion Based on Adaptive HMM for Sign Language Recognition;ACM Transactions on Multimedia Computing, Communications, and Applications;2018-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3