An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural Networks

Author:

Liao Lizhi1ORCID,Li Heng2ORCID,Shang Weiyi1,Ma Lei3

Affiliation:

1. Concordia University, Montréal, Québec, Canada

2. Polytechnique Montréal, Montréal, Québec, Canada

3. University of Alberta, Edmonton, Alberta, Canada

Abstract

Deep neural network (DNN) models typically have many hyperparameters that can be configured to achieve optimal performance on a particular dataset. Practitioners usually tune the hyperparameters of their DNN models by training a number of trial models with different configurations of the hyperparameters, to find the optimal hyperparameter configuration that maximizes the training accuracy or minimizes the training loss. As such hyperparameter tuning usually focuses on the model accuracy or the loss function, it is not clear and remains under-explored how the process impacts other performance properties of DNN models, such as inference latency and model size. On the other hand, standard DNN models are often large in size and computing-intensive, prohibiting them from being directly deployed in resource-bounded environments such as mobile devices and Internet of Things (IoT) devices. To tackle this problem, various model optimization techniques (e.g., pruning or quantization) are proposed to make DNN models smaller and less computing-intensive so that they are better suited for resource-bounded environments. However, it is neither clear how the model optimization techniques impact other performance properties of DNN models such as inference latency and battery consumption, nor how the model optimization techniques impact the effect of hyperparameter tuning (i.e., the compounding effect). Therefore, in this paper, we perform a comprehensive study on four representative and widely-adopted DNN models, i.e., CNN image classification , Resnet-50 , CNN text classification , and LSTM sentiment classification , to investigate how different DNN model hyperparameters affect the standard DNN models, as well as how the hyperparameter tuning combined with model optimization affect the optimized DNN models, in terms of various performance properties (e.g., inference latency or battery consumption). Our empirical results indicate that tuning specific hyperparameters has heterogeneous impact on the performance of DNN models across different models and different performance properties. In particular, although the top tuned DNN models usually have very similar accuracy, they may have significantly different performance in terms of other aspects (e.g., inference latency). We also observe that model optimization has a confounding effect on the impact of hyperparameters on DNN model performance. For example, two sets of hyperparameters may result in standard models with similar performance but their performance may become significantly different after they are optimized and deployed on the mobile device. Our findings highlight that practitioners can benefit from paying attention to a variety of performance properties and the confounding effect of model optimization when tuning and optimizing their DNN models.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference94 articles.

1. https://towardsdatascience.com/hyperparameters-in-deep-learning-927f7b2084dd 2019 Hyperparameters in Deep Learning

2. https://github.com/keras-team/keras-io/tree/master/examples 2020 Keras Code Examples

3. https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras 2020 Pruning in Keras Example

4. https://www.tensorflow.org/model_optimization 2020 Tensorflow Model Optimization

5. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Yuan Yu et al.2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/. Software available from tensorflow.org.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3