Multi-Head Spatio-Temporal Attention Mechanism for Urban Anomaly Event Prediction

Author:

Huang Huiqun1,Yang Xi1,He Suining1

Affiliation:

1. University of Connecticut, Department of Computer Science & Engineering, Storrs, CT, USA

Abstract

Timely forecasting the urban anomaly events in advance is of great importance to the city management and planning. However, anomaly event prediction is highly challenging due to the sparseness of data, geographic heterogeneity (e.g., complex spatial correlation, skewed spatial distribution of anomaly events and crowd flows), and the dynamic temporal dependencies. In this study, we propose M-STAP, a novel Multi-head Spatio-Temporal Attention Prediction approach to address the problem of multi-region urban anomaly event prediction. Specifically, M-STAP considers the problem from three main aspects: (1) extracting the spatial characteristics of the anomaly events in different regions, and the spatial correlations between anomaly events and crowd flows; (2) modeling the impacts of crowd flow dynamic of the most relevant regions in each time step on the anomaly events; and (3) employing attention mechanism to analyze the varying impacts of the historical anomaly events on the predicted data. We have conducted extensive experimental studies on the crowd flows and anomaly events data of New York City, Melbourne and Chicago. Our proposed model shows higher accuracy (41.91% improvement on average) in predicting multi-region anomaly events compared with the state-of-the-arts.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weather Knows What Will Occur: Urban Public Nuisance Events Prediction and Control with Meteorological Assistance;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. STICAP : Spatio-temporal Interactive Attention for Citywide Crowd Activity Prediction;ACM Transactions on Spatial Algorithms and Systems;2024-01-15

3. How to Be a Well-Prepared Organizer: Studying the Causal Effects of City Events on Human Mobility;Communications in Computer and Information Science;2024

4. sUrban;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-09-27

5. Learning Social Meta-knowledge for Nowcasting Human Mobility in Disaster;Proceedings of the ACM Web Conference 2023;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3