Affiliation:
1. University of Arizona, Tucson, AZ, USA
2. Universität Tübingen, Germany
3. Universität zu Köln, Germany
4. Universität Würzburg, Germany
Abstract
In the classical Steiner tree problem, given an undirected, connected graph
G
=(
V
,
E
) with non-negative edge costs and a set of
terminals
T
⊆
V
, the objective is to find a minimum-cost tree
E
&prime
⊆
E
that spans the terminals. The problem is APX-hard; the best-known approximation algorithm has a ratio of ρ = ln (4)+ε < 1.39. In this article, we study a natural generalization, the
multi-level Steiner tree
(MLST) problem: Given a nested sequence of terminals
T
ℓ
⊂ … ⊂
T
1
⊆
V
, compute nested trees
E
ℓ
⊆ … ⊆
E
1
⊆
E
that span the corresponding terminal sets with minimum total cost.
The MLST problem and variants thereof have been studied under various names, including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-tier tree. Several approximation results are known. We first present two simple
O
(ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristics experimentally on various instances of up to 500 vertices using three different network generation models. We also present several integer linear programming formulations for the MLST problem and compare their running times on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ = 100 levels, which is sufficient for most applications, such as network visualization or designing multi-level infrastructure.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Theoretical Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献