Boosted Web Named Entity Recognition via Tri-Training

Author:

Chou Chien-Lung1,Chang Chia-Hui1,Huang Ya-Yun1

Affiliation:

1. National Central University, Taiwan

Abstract

Named entity extraction is a fundamental task for many natural language processing applications on the web. Existing studies rely on annotated training data, which is quite expensive to obtain large datasets, limiting the effectiveness of recognition. In this research, we propose a semisupervised learning approach for web named entity recognition (NER) model construction via automatic labeling and tri-training. The former utilizes structured resources containing known named entities for automatic labeling, while the latter makes use of unlabeled examples to improve the extraction performance. Since this automatically labeled training data may contain noise, a self-testing procedure is used as a follow-up to remove low-confidence annotation and prepare higher-quality training data. Furthermore, we modify tri-training for sequence labeling and derive a proper initialization for large dataset training to improve entity recognition. Finally, we apply this semisupervised learning framework for person name recognition, business organization name recognition, and location name extraction. In the task of Chinese NER, an F-measure of 0.911, 0.849, and 0.845 can be achieved, for person, business organization, and location NER, respectively. The same framework is also applied for English and Japanese business organization name recognition and obtains models with performance of a 0.832 and 0.803 F-measure.

Funder

Industrial Technology Research Institute of Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-Supervised Event Extraction Incorporated With Topic Event Frame;Journal of Database Management;2023-02-24

2. A Radar Emitter Recognition Mechanism Based on IFS-Tri-Training Classification Processing;Electronics;2022-03-29

3. Mining Events through Activity Title Extraction and Venue Coupling;2020 International Conference on Technologies and Applications of Artificial Intelligence (TAAI);2020-12

4. On the Construction of Web NER Model Training Tool based on Distant Supervision;ACM Transactions on Asian and Low-Resource Language Information Processing;2020-11-30

5. Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training;Journal of Biomedical Informatics;2019-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3