PEBASI: A Privacy preserving, Efficient Biometric Authentication Scheme based on Irises

Author:

Gunasinghe Hasini1ORCID,Atallah Mikhail1ORCID,Bertino Elisa2ORCID

Affiliation:

1. Department of Computer Science, Purdue University, West Lafayette, IN, United States

2. Department of Computer Sciences, Purdue University, West Lafayette, IN, United States

Abstract

We introduce a novel privacy-preserving biometric authentication scheme based on irises that allows a user to enroll once at a trusted biometric certification authority (BCA) and authenticate to online service providers (SPs) multiple times without involving the BCA during the authentication. Our scheme preserves the user’s biometric privacy from the SPs and transactional privacy from the BCA, while providing security against a malicious user. During the enrollment, the BCA issues a signed token that encrypts the user’s biometrics. We introduce techniques enabling the SP and the user to perform secure computation of biometric matching between such encrypted biometrics and the user’s biometrics captured at the authentication time. We provide a prototype implementation, a performance evaluation, and a security analysis of the protocol.

Funder

Bisland Dissertation Fellowship

Emil Stefanov Memorial Partial Fellowship

Publisher

Association for Computing Machinery (ACM)

Reference64 articles.

1. Transport Security Administration. 2023. Does TSA Accept Mobile Driver’s Licenses? Retrieved from https://www.tsa.gov/travel/frequently-asked-questions/does-tsa-accept-mobile-drivers-licensesAccessed: 28-May-2023.

2. About Face ID Advanced Technology.;Retrieved from,2015

3. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. 2017. More efficient oblivious transfer extensions. In Journal of Cryptology, Vol. 30. Issue 3.

4. D. Beaver. 1991. Efficient multiparty protocols using circuit randomization. In Proceedings of the CRYPTO’91.

5. M. Blanton and M. Aliasgari. 2013. Analysis of reusability of secure sketches and fuzzy extractors. In Proceedings of the IEEE TIFS.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3