Affiliation:
1. University of Regensburg, Regensburg, Germany
2. Frankfurt University of Applied Sciences, Frankfurt, Germany
Abstract
Cloud gaming services and remote play offer a wide range of advantages but can inherent a considerable delay between input and action also known as latency. Previous work indicates that deep learning algorithms such as artificial neural networks (ANN) are able to compensate for latency. As high latency in video games significantly reduces player performance and game experience, this work investigates if latency can be compensated using ANNs within a live first-person action game. We developed a 3D video game and coupled it with the prediction of an ANN. We trained our network on data of 24 participants who played the game in a first study. We evaluated our system in a second user study with 96 participants. To simulate latency in cloud game streaming services, we added 180 ms latency to the game by buffering user inputs. In the study we predicted latency values of 60 ms, 120 ms and 180 ms. Our results show that players achieve significantly higher scores, substantially more hits per shot and associate the game significantly stronger with a positive affect when supported by our ANN. This work illustrates that high latency systems, such as game streaming services, benefit from utilizing a predictive system.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)
Reference51 articles.
1. Mart'in Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://doi.org/10.5555/3026877.3026899 Software available from tensorflow.org. Mart'in Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://doi.org/10.5555/3026877.3026899 Software available from tensorflow.org.
2. The effects of loss and latency on user performance in unreal tournament 2003®
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AI Server-Side Prediction for Latency Mitigation and Cheating Detection: The MPAI-SPG Approach;2024 IEEE Gaming, Entertainment, and Media Conference (GEM);2024-06-05
2. Effects of Adaptive Time Delay on Quality of Experience in First Person Shooter Games;Proceedings of the 19th International Conference on the Foundations of Digital Games;2024-05-21
3. Bibliography;Human-Computer Interaction;2024
4. Interaction elements;Human-Computer Interaction;2024
5. Play with my Expectations: Players Implicitly Anticipate Game Events Based on In-Game Time-Event Correlations;Proceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia;2023-12-03