Region-Different Network Reconfiguration in Disjoint Wireless Sensor Networks for Smart Agriculture Monitoring

Author:

Liu Xuxun,Zeng Xinyuan,Ren Junyu,Yin Song1,Zhou Huan2

Affiliation:

1. South China University of Technology, China

2. Northwestern Polytechnical University, China

Abstract

Connectivity restoration is essential for ensuring continuous operation in wireless sensor networks (WSNs). However, existing works lack enough network robustness when suffering from the secondary external damages. In this paper, we propose a novel connectivity restoration scheme to address this problem. This scheme comprises three connectivity mechanisms regarding relay segment selection in different regions. The first one is a data traffic decentralization mechanism, which establishes more transmission paths near the sink for reliability improvement and traffic load balancing. The second one is a segment shape selection mechanism, in which the segments with high-reliability preferably become the relay segments for greater network robustness. The third one is a traffic load transfer mechanism, in which data traffic is transferred from a high-load segment to a low-load segment for balancing energy depletion of the network. The distinctive characteristics of this work are twofold: different regions perform diverse connectivity restoration approaches according to the demand diversity of different regions, and traffic load can be balanced from upstream regions rather than only from downstream regions. Extensive simulation experiments validate the effectiveness and advantages of our proposed scheme in terms of connection cost, network robustness, load balance degree, and network longevity.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3