Faster Pseudopolynomial Time Algorithms for Subset Sum

Author:

Koiliaris Konstantinos1,Xu Chao2ORCID

Affiliation:

1. University of Illinois, Urbana-Champaign, IL, USA

2. Yahoo! Research, New York, NY, USA

Abstract

Given a (multi) set S of n positive integers and a target integer u , the subset sum problem is to decide if there is a subset of S that sums up to u . We present a series of new algorithms that compute and return all the realizable subset sums up to the integer u in Õ(min { √ n u , u 5/4 ,σ }), where σ is the sum of all elements of S and Õ hides polylogarithmic factors. We also present a modified algorithm for integers modulo m , which computes all the realizable subset sums modulo m in Õ(min { √ n m , m 5/4 }) time. Our contributions improve upon the standard dynamic programming algorithm that runs in O ( nu ) time. To the best of our knowledge, the new algorithms are the fastest deterministic algorithms for this problem. The new results can be employed in various algorithmic problems, from graph bipartition to computational social choice. Finally, we also improve a result on covering Z m , which might be of independent interest.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solving the subset sum problem by the quantum Ising model with variational quantum optimization based on conditional values at risk;Science China Physics, Mechanics & Astronomy;2024-07-18

2. An Improved Unbounded-DP Algorithm for the Unbounded Knapsack Problem with Bounded Coefficients;Mathematics;2024-06-16

3. Shaving Logs via Large Sieve Inequality: Faster Algorithms for Sparse Convolution and More;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

4. 0-1 Knapsack in Nearly Quadratic Time;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

5. A note on scheduling identical parallel machines with preemptions and setup times;International Journal of Production Research;2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3