Affiliation:
1. Computer Systems Laboratory, Stanford University, CA
Abstract
Scalable shared-memory multiprocessors distribute memory among the processors and use scalable interconnection networks to provide high bandwidth and low latency communication. In addition, memory accesses are cached, buffered, and pipelined to bridge the gap between the slow shared memory and the fast processors. Unless carefully controlled, such architectural optimizations can cause memory accesses to be executed in an order different from what the programmer expects. The set of allowable memory access orderings forms the memory consistency model or event ordering model for an architecture.
This paper introduces a new model of memory consistency, called
release consistency
, that allows for more buffering and pipelining than previously proposed models. A framework for classifying shared accesses and reasoning about event ordering is developed. The release consistency model is shown to be equivalent to the sequential consistency model for parallel programs with sufficient synchronization. Possible performance gains from the less strict constraints of the release consistency model are explored. Finally, practical implementation issues are discussed, concentrating on issues relevant to scalable architectures.
Publisher
Association for Computing Machinery (ACM)
Reference12 articles.
1. Sarita Adve and Mark Hill. Personal communication. March 1990. Sarita Adve and Mark Hill. Personal communication. March 1990.
2. Parallel implementation of OPS5 on the encore multiprocessor: Results and analysis
Cited by
149 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献