HEART: H ybrid Memory and E nergy- A ware R eal- T ime Scheduling for Multi-Processor Systems

Author:

Günzel Mario1,Hakert Christian1,Chen Kuan-Hsun1,Chen Jian-Jia1

Affiliation:

1. TU Dortmund University, Dortmund, Germany

Abstract

Dynamic power management (DPM) reduces the power consumption of a computing system when it idles, by switching the system into a low power state for hibernation. When all processors in the system share the same component, e.g., a shared memory, powering off this component during hibernation is only possible when all processors idle at the same time. For a real-time system, the schedulability property has to be guaranteed on every processor, especially if idle intervals are considered to be actively introduced. In this work, we consider real-time systems with hybrid shared-memory architectures, which consist of shared volatile memory (VM) and non-volatile memory (NVM). Energy-efficient execution is achieved by applying DPM to turn off all memories during the hibernation mode. Towards this, we first explore the hybrid memory architectures and suggest a task model, which features configurable hibernation overheads. We propose a multi-processor procrastination algorithm (HEART), based on partitioned earliest-deadline-first (pEDF) scheduling. Our algorithm facilitates reducing the energy consumption by actively enlarging the hibernation time. It enforces all processors to idle simultaneously without violating the schedulability condition, such that the system can enter the hibernation state, where shared memories are turned off. Throughout extensive evaluation of HEART, we demonstrate (1) the increase in potential hibernation time, respectively the decrease in energy consumption, and (2) that our algorithm is not only more general but also has better performance than the state of the art with respect to energy efficiency in most cases.

Funder

Deutsche Forschungsgemeinschaft

Sus-Aware

OneMemory

European Research Council

European Union’s Horizon 2020 research and innovation programme

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pointer Analysis for Programs on Hybrid DRAM-PM Memory Systems;Proceedings of the 52nd International Conference on Parallel Processing Workshops;2023-08-07

2. Impact of Thermal Boundary Resistance on Thermoelectric Effects of the Blade-Type Phase-Change Random Access Memory Device;Frontiers in Materials;2022-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3