1. Typilus: neural type hints
2. Pavol Bielik , Veselin Raychev , and Martin T . Vechev . 2016 . PHOG : Probabilistic Model for Code. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, Maria-Florina Balcan and Kilian Q. Weinberger (Eds.) (JMLR Workshop and Conference Proceedings , Vol. 48). JMLR.org, 2933– 2942 . http://proceedings.mlr.press/v48/bielik16.html Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2016. PHOG: Probabilistic Model for Code. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, Maria-Florina Balcan and Kilian Q. Weinberger (Eds.) (JMLR Workshop and Conference Proceedings, Vol. 48). JMLR.org, 2933–2942. http://proceedings.mlr.press/v48/bielik16.html
3. Casper Boone , Niels de Bruin , Arjan Langerak , and Fabian Stelmach . 2019. DLTPy: Deep Learning Type Inference of Python Function Signatures using Natural Language Context. CoRR, abs/1912.00680 ( 2019 ), arxiv:1912.00680. arxiv:1912.00680 Casper Boone, Niels de Bruin, Arjan Langerak, and Fabian Stelmach. 2019. DLTPy: Deep Learning Type Inference of Python Function Signatures using Natural Language Context. CoRR, abs/1912.00680 (2019), arxiv:1912.00680. arxiv:1912.00680
4. Attributed Programmed Graph Grammars and Their Application to Schematic Diagram Interpretation
5. A graph distance metric based on the maximal common subgraph