Fix Fairness, Don’t Ruin Accuracy: Performance Aware Fairness Repair using AutoML

Author:

Nguyen Giang1,Biswas Sumon2,Rajan Hridesh1

Affiliation:

1. Iowa State University, Ames, USA

2. Carnegie Mellon University, Pittsburgh, USA

Funder

National Science Foundation

Publisher

ACM

Reference66 articles.

1. Black box fairness testing of machine learning models

2. Shibbir Ahmed , Sayem Mohammad Imtiaz , Samantha Syeda Khairunnesa , Breno Dantas Cruz , and Hridesh Rajan . 2023 . Design by Contract for Deep Learning APIs. In ESEC/FSE’2023 : The 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. Shibbir Ahmed, Sayem Mohammad Imtiaz, Samantha Syeda Khairunnesa, Breno Dantas Cruz, and Hridesh Rajan. 2023. Design by Contract for Deep Learning APIs. In ESEC/FSE’2023: The 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering.

3. Julia Angwin , Jeff Larson , Surya Mattu , and Lauren Kirchner . 2016. Machine bias risk assessments in criminal sentencing. ProPublica , May, 23 ( 2016 ). Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine bias risk assessments in criminal sentencing. ProPublica, May, 23 (2016).

4. Rachel KE Bellamy Kuntal Dey Michael Hind Samuel C Hoffman Stephanie Houde Kalapriya Kannan Pranay Lohia Jacquelyn Martino Sameep Mehta and Aleksandra Mojsilovic. 2018. AI Fairness 360: An extensible toolkit for detecting understanding and mitigating unwanted algorithmic bias. arXiv preprint arXiv:1810.01943. Rachel KE Bellamy Kuntal Dey Michael Hind Samuel C Hoffman Stephanie Houde Kalapriya Kannan Pranay Lohia Jacquelyn Martino Sameep Mehta and Aleksandra Mojsilovic. 2018. AI Fairness 360: An extensible toolkit for detecting understanding and mitigating unwanted algorithmic bias. arXiv preprint arXiv:1810.01943.

5. Reuben Binns . 2018 . Fairness in machine learning: Lessons from political philosophy . In Conference on Fairness, Accountability and Transparency. 149–159 . Reuben Binns. 2018. Fairness in machine learning: Lessons from political philosophy. In Conference on Fairness, Accountability and Transparency. 149–159.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3