Automated closed-loop model checking of implantable pacemakers using abstraction trees

Author:

Jiang Zhihao1,Abbas Houssam1,Mosterman Pieter J.2,Mangharam Rahul1

Affiliation:

1. University of Pennsylvania

2. McGill University, Canada and MathWorks

Abstract

Autonomous medical devices such as implantable cardiac pacemakers are capable of diagnosing the patient condition and delivering therapy without human intervention. Their ability to autonomously affect the physiological state of the patient makes them safety-critical. Sufficient evidence for the safety and efficacy of the device software, which makes these autonomous decisions, should be provided before these devices can be released on the market. Formal methods like model checking can provide safety evidence that the devices can safely operate under a large variety of physiological conditions. The challenge is to develop physiological models that are general enough to cover the large variability of human physiology, and also expressive enough to provide physiological contexts to counter-examples returned by the model checker. In this paper, the authors develop a set of physiological abstraction rules that introduce physiological constraints to heart models. By applying these abstraction rules to a initial set of heart models, an abstraction tree is created. The root model covers all possible inputs to a pacemaker and derived models cover inputs from different heart conditions. If a counter-example is returned by the model checker, the abstraction tree is traversed so that the most concrete counter-example(s) with physiological contexts can be returned to the domain experts for validity check. The abstraction tree framework replaces the manual abstraction and refinement framework, which reduced the amount of domain knowledge required to perform closed-loop model checking. It encourages the use of model checking during the development of autonomous medical devices, and identifies safety risks earlier in the design process. 1

Publisher

Association for Computing Machinery (ACM)

Subject

Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3