Compiler techniques for code compaction

Author:

Debray Saumya K.1,Evans William1,Muth Robert2,De Sutter Bjorn3

Affiliation:

1. Univ. of Arizona, Tucson

2. Compaq Computer Corp., Shrewsbury, MA

3. Univ. of Ghent, Ghent, Belgium

Abstract

In recent years there has been an increasing trend toward the incorpor ation of computers into a variety of devices where the amount of memory available is limited. This makes it desirable to try to reduce the size of applications where possible. This article explores the use of compiler techniques to accomplish code compaction to yield smaller executables. The main contribution of this article is to show that careful, aggressive, interprocedural optimization, together with procedural abstraction of repeated code fragments, can yield significantly better reductions in code size than previous approaches, which have generally focused on abstraction of repeated instruction sequences. We also show how “equivalent” code fragments can be detected and factored out using conventional compiler techniques, and without having to resort to purely linear treatments of code sequences as in suffix-tree-based approaches, thereby setting up a framework for code compaction that can be more flexible in its treatment of what code fragments are considered equivalent. Our ideas have been implemented in the form of a binary-rewriting tool that reduces the size of executables by about 30% on the average.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference17 articles.

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A parallel deep learning-based code clone detection model;Journal of Parallel and Distributed Computing;2023-11

2. Poison Attack and Poison Detection on Deep Source Code Processing Models;ACM Transactions on Software Engineering and Methodology;2023-11

3. Towards a metrics suite for the complexity analysis of LabVIEW systems models;Science of Computer Programming;2023-04

4. Towards Porting Operating Systems with Program Synthesis;ACM Transactions on Programming Languages and Systems;2023-03-03

5. Linker Code Size Optimization for Native Mobile Applications;Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler Construction;2023-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3