Affiliation:
1. Electrical and Computer Engineering, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
Abstract
Generative Adversarial Networks (GANs) have received wide attention in the machine learning field for their potential to learn high-dimensional, complex real data distribution. Specifically, they do not rely on any assumptions about the distribution and can generate real-like samples from latent space in a simple manner. This powerful property allows GANs to be applied to various applications such as image synthesis, image attribute editing, image translation, domain adaptation, and other academic fields. In this article, we discuss the details of GANs for those readers who are familiar with, but do not comprehend GANs deeply or who wish to view GANs from various perspectives. In addition, we explain how GANs operates and the fundamental meaning of various objective functions that have been suggested recently. We then focus on how the GAN can be combined with an autoencoder framework. Finally, we enumerate the GAN variants that are applied to various tasks and other fields for those who are interested in exploiting GANs for their research.
Funder
Electrical and Computer Engineering, Seoul National University
Research and Development of Police science and Technology under Center for Research and Development of Police science and Technology
Ministry of Science and ICT
Brain Korea 21 Plus Project
Korean National Police Agency
ICT and Future Planning
National Research Foundation of Korea
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
237 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献