Connectivity-Based Space Filling Curve Construction Algorithms in High Genus 3D Surface WSNs

Author:

Wang Chen1,Jiang Hongbo1,Dong Yan1

Affiliation:

1. Huazhong University of Science and Technology, P. R. China

Abstract

Many applications in wireless sensor networks (WSNs) require that sensor observations in a given monitoring area are aggregated in a serial fashion. This demands a routing path to be constructed traversing all sensors in that area, which is also needed to linearize the network. In this article, we present SURF, a <u>S</u>pace filling c<u>UR</u>ve construction scheme for high genus three-dimensional (3D) sur<u>F</u>ace WSNs, yielding a traversal path provably aperiodic (that is, any node is covered at most a constant number of times). SURF first utilizes the hop-count distance function to construct the iso-contour in discrete settings, and then it uses the concept of the Reeb graph and the maximum cut set to divide the network into different regions. Finally, it conducts a novel serial traversal scheme, enabling the traversal within and between regions. To the best of our knowledge, SURF is the first high genus 3D surface WSN targeted and pure connectivity-based solution for linearizing the networks. It is fully distributed and highly scalable, requiring a nearly constant storage and communication cost per node in the network. To incorporate adaptive density of the constructed space filling curve, we also design a second algorithm, called SURF + , which makes use of parameterized spiral-like curves to cover the 3D surface and thus can yield a multiresolution SFC adapting to different requirements on travel budget or fusion delay. The application combining both algorithms for in-network data storage and retrieval in high genus 3D surface WSNs is also presented. Extensive simulations on several representative networks demonstrate that both algorithms work well on high genus 3D surface WSNs.

Funder

National Natural Science Foundation of Hubei Province

China Postdoctoral Science Foundation

National High Technology R&D Program (“863” Program) of China

Science and Technology Plan Projects of Wuhan City

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3